Protect Your Eggs

Estimated Time: 90 minutes

SUMMARY
In this activity, kids develop ways to protect hard boiled eggs. Using items found around the kitchen, kids will design and build engineered devices to protect their eggs for an “egg drop.” Alternatively, they can build a bioplastic helmet to protect their eggs when they roll them down a ramp. After putting their engineered designs to the test, kids learn where their egg cracked by dyeing them.

WHAT YOU’LL LEARN
- How to make a simple polymer
- Engineering design skills
- Basic permeability concepts

<table>
<thead>
<tr>
<th>Materials Used</th>
<th>Resources Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooking equipment for eggs (see Resources section)</td>
<td>Hard Boiled Eggs: https://www.youtube.com/watch?v=xUHKpHek2E8</td>
</tr>
<tr>
<td>Pencil and paper (ideally graph paper)</td>
<td>Making Bioplastics: https://www.youtube.com/watch?v=kjvQMMQWNGE&t=243s</td>
</tr>
<tr>
<td>Glue or tape</td>
<td></td>
</tr>
<tr>
<td>Various materials for building an egg protector (straws, paperclips, toothpicks, paper, plastic bags, string, twine, yarn, kabob skewers, popsicle sticks, rubber bands, etc.)</td>
<td></td>
</tr>
</tbody>
</table>

Bioplastic Helmet
- 1 Tbsp. cornstarch
- 5 Tbsp. cold water
- 1 tsp Vegetable Oil
- 1 sandwich bag
- 1 toy car
- 1 medicine cup
- A ramp

Egg Dyeing
- 1 cup or bowl
- 1 cup of hot water
- 1 tsp. white vinegar
- Food coloring

WHAT TO DO
Hard Cooking Eggs (any method works, but steaming them is the best cooking method and easiest for peeling)
1. Add about half an inch of water in a pot with a steamer basket.
2. Over high heat, bring water to a boil.
3. Add eggs to the steamer basket and cover with a lid.
4. Steam eggs for 12 minutes.
5. Remove eggs. Add them to a bowl of ice water to cool them and to stop the cooking process.

Egg Drop
1. Begin by identifying where you will drop your eggs. It isn’t necessary to drop them from anything higher than someone standing on a chair for younger kids.
2. Discuss situations where someone may want to land a “payload” (medical supplies, the Mars rover, food, bottled water, etc.) softly. How is that typically accomplished? Answers may include: parachutes, hard structures surrounding the object, inflated cushions.
3. The impact on the egg depends on two factors: the velocity of the egg when it stops falling (hits the ground) and the distance over which it comes to a stop. When you simply drop an egg, it is moving very quickly and comes to an immediate stop when it hits the ground. If you dropped it onto a cushion, the egg would be less likely to break because it would hit at the same velocity, but it would come to a stop more slowly as the cushion compressed. If you were to attach several helium balloons to the egg, the egg would be less likely to break because it would be moving slower when it started to come to a stop.
4. Design the device you will use to protect your egg on a piece of paper with the materials available.
5. Construct the device as designed, or as close to the design as possible. It’s possible that the device may need to be constructed around the egg.
6. Test the prototype by dropping it carefully from the site identified in step 1. To accurately test the prototype, each drop should be done from the exact same height and without lifting or pushing it down while dropping it.

Bioplastic Helmet
1. Place 1 Tbsp. cornstarch in a sandwich bag.
2. Add 1 tsp vegetable oil and 5 Tbsp. water into the bag and mix.
3. Do not completely seal the bag. Place the partially sealed bag in a microwave oven on high for 30 seconds. Be careful — the bioplastic will be very hot. Once you are able to handle it safely, mold it into a helmet shape. It may work best to attach it to the egg at this time.
4. Allow the helmet to cool and harden for several minutes.
5. Create a small ramp to roll the toy car and egg down. A 20 to 30 degree angle works best.
6. Attach the medicine cup to the toy car and place the egg with the bioplastic helmet on it in the car.
7. Roll the toy car down the ramp and watch it crash.
8. Roll an egg without a helmet in the same car down the same ramp for comparison.

Dyeing Eggs and Evaluating Egg Protection
1. To see cracks in the eggs better, dye the egg. This will help show small cracks in the eggs that may not be visible to the naked eye.
2. Add 1 tsp. of white vinegar to 1 cup of hot water in a cup, mug, or bowl.
3. Add about 20 drops of food coloring of your choice to the mixture.
4. Submerge the egg in the mixture for about a minute. Feel free to vary the time and check the eggs as you see fit. The vinegar allows the food coloring to stain better and penetrate farther into the egg shell because food coloring needs an acidic environment to work. The vinegar makes the water more acidic, letting the food coloring work. Places with cracks allow the food coloring to stain deeper and also provide more surface area, so cracks will appear darker.
5. Analyze the cracks in the eggs to determine how well your design protected the egg. This could be done in several ways:
a. Count the cracks
b. Measure the total length of the cracks
c. Measure the area affected by the cracks
d. Include “severity” of the crack (Did a whole portion fall off? How dark is the crack?)
e. Determine your own, or have your kid determine a good measure, to practice experimental design skills

TIPS

- It isn’t necessary to cook the eggs, but it’s more fun to color the eggs to determine where they cracked and to be able to eat them afterward. No reason to waste eggs.
- In reality, the eggs breaking has more to do with the energy of the egg and the force exerted on it to stop, but we can simplify because the mass is constant. Older kids may benefit from learning about kinetic energy (KE=mv^2/2), force (F=ma), and work (W=Fd), where m is mass, v is velocity, a is acceleration, and d is distance/displacement. This is beneficial because it shows that reducing the velocity reduces the impact quadratically and reducing the distance reduces it linearly (v^2 and d, respectively).
- Video recording the egg drop, especially the point of impact, can make for valuable piece of evidence for you and your kid to review and rethink the design. We have all seen slow motion impact videos.
- Either testing activity can be repeated to optimize the design and test again. This is an important step in the engineering design process, and provides a great extension to the activity. The key is to have your designer compare their designs and explain why things changed. Explaining why is the difference between simply repeating the process and optimization.